Moving beyond post-hoc XAI: Lessons learned from dynamical climate modeling
Ryan O'Loughlin,
Dan Li,
Travis O'Brien
Abstract:Abstract. AI models are criticized as being black boxes, potentially subjecting climate science to greater uncertainty. Explainable artificial intelligence (XAI) has been proposed to probe AI models and increase trust. In this Perspective, we suggest that, in addition to using XAI methods, AI researchers in climate science can learn from past successes in the development of physics-based dynamical climate models. Dynamical models are complex but have gained trust because their successes and failures can be att… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.