In this paper, we examine a nonlinear model with an impurity emulating a bend. We justify the geometric interpretation of the model and connect it with earlier work on models including geometric effects. We focus on both the bifurcation and stability analysis of the modes that emerge as a function of the strength of the bend angle, but we also examine dynamical effects including the scattering of mobile localized modes (discrete breathers) off of such a geometric structure. The potential outcomes of such numerical experiments (including transmission, trapping within the bend as well as reflection) are highlighted and qualitatively explained. Such models are of interest both theoretically in understanding the interplay of breathers with curvature, but also practically in simple models of photonic crystals or of bent chains of DNA.