2019
DOI: 10.18185/erzifbed.509571
|View full text |Cite
|
Sign up to set email alerts
|

Moving Object Detection and Localization in Camera-Trap Images

Abstract: Öz Foto-kapanlar genellikle ormanlık arazide sabit noktaya yerleştirilmiş ve doğal yaşamı izlemek için kullanılan görüntüleme cihazlarıdır. Foto-kapanlar kullanılarak canlıların doğal yaşamı üzerinde araştırma yapmak amacıyla milyonlarca görüntü kaydedilmektedir. Kaydedilmiş görüntüler üzerinde bilgisayar tabanlı yöntemler ile canlıların tespit edilmesi ve tanınması amacıyla otomatik yöntemler geliştirilmektedir. Ayrıca foto-kapan görüntülerinde arka plan karmaşıklığı, arka planın hareketli olması, ışık şiddet… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 25 publications
0
2
0
Order By: Relevance
“…It is well known that YOLO is a convolutional neural network that consists of convolution, pooling, and fullyconnected layers [29]. In a traditional convolutional neural network, , , is the feature value of the m layer n feature map of the position (i, j) calculated as following [30],…”
Section: B Object Detection Based On Yolomentioning
confidence: 99%
See 1 more Smart Citation
“…It is well known that YOLO is a convolutional neural network that consists of convolution, pooling, and fullyconnected layers [29]. In a traditional convolutional neural network, , , is the feature value of the m layer n feature map of the position (i, j) calculated as following [30],…”
Section: B Object Detection Based On Yolomentioning
confidence: 99%
“…where , , is the feature map, and refers to the local neighborhoods of the position (i, j). In the last stage of the network, several fully-linked layers are used to convert 2D feature maps into a 1D feature vector [29]. In this output layer, the SVM algorithm which can be generally combined with the softmax operator or CNN is used for classification.…”
Section: B Object Detection Based On Yolomentioning
confidence: 99%