Building massively parallel applications has become increasingly important with coming Exascale related technologies. For building these applications, a combination of programming models is needed to increase the system's parallelism. One of these combinations is the dual-programming model (MPI+X) which has many structures that increase parallelism in heterogeneous systems that include CPUs and GPUs. MPI + OpenACC programming model has many advantages and features that increase parallelism with respect heterogeneous architecture and support different platform with more performance, productivity, and programmability. The main problem in building systems with different programming models that it is a hard job for programmers and it is more error-prone, which is not easy to test. Also, testing parallel applications is a difficult task, because of the non-determined behavior of the parallel application. Even after detecting the errors and modifying the source code, it is not easy to determine whether the errors have been corrected or remain hidden. Furthermore, integrating two different programming models inside the same application makes it even more difficult to test. Also, the misusage of OpenACC can lead to several run-time errors that compilers cannot detect, and the programmers will not know about them. To solve this problem, we proposed a parallel hybrid testing tool for detecting run-time errors for systems implemented in C++ and MPI + OpenACC. The hybrid techniques combine static and dynamic testing techniques for detecting real and potential run-time errors by analyzing the source code and during run time. Using parallel hybrid techniques will enhance the testing time and cover a wide range of errors. Also, we propose a new assertion language for helping in detecting potential run-time errors. Finally, to the best of our knowledge, identifying and classifying OpenACC errors has not been done before, and there is no parallel testing tool designed to test applications programmed by using the dualprogramming model MPI + OpenACC or the single-programming models OpenACC.