The thermal degradation behavior of a series of well defined poly(dimethylsiloxane) (PDMS) model networks has been studied using a combination analytical thermal analysis techniques and multivariate statistical analysis in order to probe the influence of network architecture on degradation chemistry. The aim of this research has been to determine the effect differing network architectures: mono and bimodality, a range of crosslink density, inter-chain molar mass and percentage of free chain ends on the mechanisms of PDMS thermal degradation. A series of model PDMS networks have been formulated using of tin catalyzed condensation cure chemistry and a range of linear precursors to yield a matrix of model network systems. The thermal degradation chemistry of these model networks have been characterized in relation to their structure by means of pyrolysis gas chromatography mass spectrometry (Py-GCMS), thermal gravimetric analysis (TGA) and multivariate statistical analysis. The results clearly demonstrate that the structural architecture of (chemically similar) PDMS networks has a significant impact on the mechanisms of PDMS thermal degradation. Notability, with decreasing inter-crosslink chain length, larger cyclic siloxane species ([D5) become more abundant degradation products and that there is a relationship between inter-chain molar mass, degree of crosslinking and the thermal stability on the mechanisms of degradation. This work effectively demonstrates that quantifiable relationships exist between basic network architectures and the distributions of degradation derived species in PDMS networks.