abbreviatioNs ACA = anterior cerebral artery; AUC = area under the curve; DSA = digital subtraction angiography; ICA = internal carotid artery; ICC = interclass correlation coefficient; MCA = middle cerebral artery; MIP = maximum-intensity projection; MMD = moyamoya disease; MMV = moyamoya vessel; MRA = MR angiography; PCA = posterior cerebral artery; PCoA = posterior communicating artery; ROC = receiver operating characteristic; STA = superficial temporal artery; TOF = time of flight. obJective The authors compared the image quality and diagnostic sensitivity and specificity of 7.0-T and 3.0-T MRI and time-of-flight (TOF) MR angiography (MRA) in patients with moyamoya disease (MMD). methods MR images of 15 patients with ischemic-type MMD (8 males, 7 females; age 13-48 years) and 13 healthy controls (7 males, 6 females; age 19-28 years) who underwent both 7.0-T and 3.0-T MRI and MRA were studied retrospectively. The main intracranial arteries were assessed by using the modified Houkin's grading system (MRA score). Moyamoya vessels (MMVs) were evaluated by 2 grading systems: the MMV quality score and the MMV area score. Two diagnostic criteria for MMD were used: the T2 criteria, which used flow voids in the basal ganglion on T2-weighted images, and the TOF criteria, which used the high-intensity areas in the basal ganglion on source images from TOF MRA. All data were evaluated by 2 independent readers who were blinded to the strength field and presence or absence of MMD. Using conventional angiography as the gold standard, the sensitivity and specificity of 7.0-T and 3.0-T MRI/MRA in the diagnosis of MMD were calculated. The differences between 7.0-T and 3.0-T MRI and MRA were statistically compared. results No significant differences were observed between 7.0-T and 3.0-T MRA in MRA score (p = 0.317) or MRA grade (p = 0.317). There was a strong correlation between the Suzuki's stage and MRA grade in both 3.0-T (r s = 0.930; p < 0.001) and 7.0-T (r s = 0.966; p < 0.001) MRA. However, MMVs were visualized significantly better on 7.0-T than on 3.0-T MRA, suggested by both the MMV quality score (p = 0.001) and the MMV area score (p = 0.001). The correlation between the Suzuki's stage and the MMV area score was moderate in 3.0-T MRA (r s = 0.738; p = 0.002) and strong in 7.0-T MRA (r s = 0.908; p < 0.001). Moreover, 7.0-T MR images showed a greater capacity for detecting flow voids in the basal ganglion on both T2-weighted MR images (p < 0.001) and TOF source images (p < 0.001); 7.0-T MRA also revealed the subbranches of superficial temporal arteries much better. Receiver operating characteristic curve analysis showed that, according to the T2 criteria, 7.0-T MRI/MRA was more sensitive (sensitivity 1.000; specificity 0.933) than 3.0-T MRI/MRA (sensitivity 0.692; specificity 0.933) in diagnosing MMD; based on the TOF criteria, 7.0-T MRI/MRA was more sensitive (1.000 vs 0.733, respectively) and more specific (1.000 vs 0.923, respectively) than 3.0-T MRI/MRA. coNclusioNs Compared with 3.0-T MRI/MRA, 7.0-T MRI/MRA detecte...