Moyamoya disease (MMD) is a rare, progressive cerebrovascular disorder, with an unknown aetiology and pathogenesis. It is characterized by steno-occlusive changes at the terminal portion of the internal carotid artery (ICA), which is accompanied by variable development of the basal collaterals called moyamoya vessels. In this study, we investigate the potential for structural T1 magnetic resonance imaging (MRI) to help characterize MMD clinically, with the help of regionally distributed relative signal intensities (RRSIs) and volumes (RRVs). These RRSIs and RRVs provide the ability to characterize aspects of regional brain development and represent an extension to existing automated biomarker extraction technologies. This study included 269 MRI examinations from MMD patients and 993 MRI examinations from neurotypical controls, with regional biomarkers compared between groups with the area under the receiver operating characteristic curve (AUC). Results demonstrate abnormal presentation of RRSIs and RRVs in the insula (15-to 20-year old cohort, left AUC: 0.74, right AUC: 0.71) and the lateral orbitofrontal region (5-to 10-year old cohort, left AUC: 0.67; 15-20 year cohort, left AUC: 0.62, right AUC: 0.65). Results indicate that RRSIs and RRVs may help in characterizing brain development, assist in the assessment of the presentation of the brains of children with MMD and help overcome standardization challenges in multiprotocol clinical MRI. Further investigation of the potential for RRSIs and RRVs in clinical imaging is warranted and supported through the release of open-source software.