Objective
Increased vascular stiffness is central to the pathophysiology of aging, hypertension, diabetes and atherosclerosis. However, relatively few studies have examined vascular stiffness in both the thoracic and abdominal aorta with aging, despite major differences in anatomy, embryological origin and relation to aortic aneurysm.
Approach and Results
The two other unique features of this study were 1) to study young (9±1 years) and old (26±1 years) male monkeys, and 2) to study direct and continuous measurements of aortic pressure and thoracic and abdominal aortic diameters in conscious monkeys. As expected, aortic stiffness, β, was increased p<0.05, 2–3 fold, in old vs. young thoracic aorta, and augmented further with superimposition of acute hypertension with phenylephrine. Surprisingly, stiffness was not greater in old thoracic aorta than young abdominal aorta. These results can be explained in part by the collagen/elastin ratio, but more importantly, by disarray of collagen and elastin, which correlated best with vascular stiffness. However, vascular smooth muscle cell stiffness, was not different in thoracic vs. abdominal aorta in either young or old monkeys.
Conclusions
Thus, aortic stiffness increases with aging as expected, but the most severe increases in aortic stiffness observed in the abdominal aorta is novel, where values in young monkeys equaled, or even exceeded, values of thoracic aortic stiffness in old monkeys. These results can be explained by alterations in collagen/elastin ratio, but even more importantly by collagen and elastin disarray.