2024
DOI: 10.1111/coin.12685
|View full text |Cite
|
Sign up to set email alerts
|

MRD‐GAN: Multi‐representation discrimination GAN for enhancing the diversity of the generated data

Mohammed Megahed,
Ammar Mohammed

Abstract: The generative adversarial network (GAN) is a highly effective member of the generative models category and is extensively employed for generating realistic samples across various domains. The fundamental concept behind GAN involves two networks, a generator and a discriminator, competing against each other. During the training process, generator and discriminator networks encounter several issues that can potentially affect the quality and diversity of the generated samples. One such critical issue is mode co… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 65 publications
0
0
0
Order By: Relevance