Abnormal cells in human brain lead to the development of tumors. Manual detection of this tumor region is a time‐consuming process. Hence, this paper proposes an efficient and automated computer‐aided methodology for brain tumor detection and segmentation using image registration technique and classification approaches. This proposed work consists of the following modules: image registration, contourlet transform, and feature extraction with feature normalization, classification, and segmentation. The extracted features are optimized using genetic algorithm, and then an adaptive neuro‐fuzzy inference system classification approach is used to classify the features for the detection and segmentation of tumor regions in brain magnetic resonance imaging. A quantitative analysis is performed to evaluate the proposed methodology for brain tumor detection using sensitivity, specificity, segmentation accuracy, precision, and Dice similarity coefficient.