Myotonic Dystrophy Type 1 (DM1) and 2 (DM2) present with distinct though overlapping clinical phenotypes. Comparative imaging data on skeletal muscle involvement are not at present available. We used the novel technique of whole body 3.0 Tesla (T) Magnetic Resonance Imaging (MRI) to further characterize musculoskeletal features in DM2 and compared the results with DM1.MRI findings of 15 DM1 and 14 DM2 patients were evaluated with respect to patterns of skeletal muscle affection and clinical data using the Muscular Impairment Rating Scale (MIRS) and Medical Research Council scale (MRC). All DM1 patients had pathological MRI compared with only 5 DM2 patients. In contrast to DM2, DM1 patients showed a characteristic distribution of muscle involvement with frequent and early degeneration of the medial heads of gastrocnemius muscles, and a perifemoral semilunar pattern of quadriceps muscle affection sparing the rectus femoris. The most frequently affected muscles in DM1 were the medial heads of gastrocnemius, soleus, and vastus medialis muscles. In DM2, however, the erector spinae and gluteus maximus muscles were most vulnerable to degeneration. MRI data were in line with the clinical grading in 12 DM1 and 3 DM2 patients. In 3 DM1 and 5 DM2 patients, MRI detected subclinical muscle involvement. 9 DM2 patients with mild to moderate proximal muscle weakness and/or myalgias had normal MRI. Pathological MRI changes in DM2 emerged with increasing age and were restricted to women. Whole body 3.0T MRI is a sensitive imaging technique that demonstrated a characteristic skeletal muscle affection in DM1. In contrast, MRI was no reliable indicator for skeletal muscle involvement in mildly affected DM2 patients since myalgia and mild paresis were usually not reflected by MRI signal alterations.