The clinical applicability of radiomics in oncology depends on its transferability to real-world settings. However, the absence of standardized radiomics pipelines combined with methodological variability and insufficient reporting may hamper the reproducibility of radiomic analyses, impeding its translation to clinics. This study aimed to identify and replicate published, reproducible radiomic signatures based on magnetic resonance imaging (MRI), for prognosis of overall survival in head and neck squamous cell carcinoma (HNSCC) patients. Seven signatures were identified and reproduced on 58 HNSCC patients from the DB2Decide Project. The analysis focused on: assessing the signatures’ reproducibility and replicating them by addressing the insufficient reporting; evaluating their relationship and performances; and proposing a cluster-based approach to combine radiomic signatures, enhancing the prognostic performance. The analysis revealed key insights: (1) despite the signatures were based on different features, high correlations among signatures and features suggested consistency in the description of lesion properties; (2) although the uncertainties in reproducing the signatures, they exhibited a moderate prognostic capability on an external dataset; (3) clustering approaches improved prognostic performance compared to individual signatures. Thus, transparent methodology not only facilitates replication on external datasets but also advances the field, refining prognostic models for potential personalized medicine applications.