Background: Diabetic foot ulcers (DFUs) pose a serious long-term threat because of elevated mortality and disability risks. Research on its biomarkers is still, however, very limited. In this paper, we have effectively identified biomarkers linked with macrophage excretion in diabetic foot ulcers through the application of bioinformatics and machine learning methodologies. These findings were subsequently validated using external datasets and animal experiments. Such discoveries are anticipated to offer novel insights and approaches for the early diagnosis and treatment of DFU. Methods: In this work, we used the Gene Expression Omnibus (GEO) database's datasets GSE68183 and GSE80178 as the training dataset to build a gene model using machine learning methods. After that, we used the training and validation sets to validate the model (GSE134431). On the model genes, we performed enrichment analysis using both gene set variant analysis (GSVA) and gene set enrichment analysis (GSEA). Additionally, the model genes were subjected to immunological association and immune function analyses. Results: In this study, PROS1 was identified as a potential key target associated with macrophage efflux in DFU by machine learning and bioinformatics approaches. Subsequently, the key biomarker status of PROS1 in DFU was also confirmed by external datasets. In addition, PROS1 also plays a key role in macrophage exudation in DFU. This gene may be associated with macrophage M1, CD4 memory T cells, naïve B cells, and macrophage M2, and affects IL-17, Rap1, hedgehog, and JAK-STAT signaling pathways. Conclusions: PROS1 was identified and validated as a biomarker for DFU. This finding has the potential to provide a target for macrophage clearance of DFU.