Respiring mitochondria maintain a membrane potential (⌬⌿) 1 of Ϫ150 to Ϫ180 mV (⌬⌿, inside negative). This high ⌬⌿ constitutes a large driving force for the electrophoretic influx of cations, either through specific channels or by diffusion through the membrane. Several cation channels have been characterized physiologically (reviewed in Refs. 1 and 2), and recently, a single one has been identified molecularly (3). These transport systems seem to have intrinsic control mechanisms which ensure that the matrix cation concentrations stay within physiological ranges, far below chemical equilibrium.Diffusive permeability of the inner mitochondrial membrane to ions is generally low but physiologically significant, as it lowers the pH gradient and membrane potential. Moreover, if not counteracted by extrusion, steadily increasing concentrations of matrix cations (and of compensating anions) will lead to an imbalance of osmotic pressure across the inner mitochondrial membrane. As a consequence, water will pass through the membrane, causing excessive swelling and eventual rupture of the organelle (1, 2, 4).As first proposed by P. Mitchell (5), mitochondria have carrier systems allowing the electroneutral exchange of cations against H ϩ (and anions against OH Ϫ ). These exchangers counteract the ⌬⌿-driven cation leakage of the membrane and also cation imbalances due to changes in mitochondrial physiology. Mitochondrial cation distribution is, therefore, a steady state, in which the accumulation ratio is modulated by the relative rates of cation influx and efflux by means of separate pathways.Many physiological studies have been devoted to cation/H ϩ exchange systems (reviewed in Ref.