2023
DOI: 10.3390/electronics13010044
|View full text |Cite
|
Sign up to set email alerts
|

MSGL+: Fast and Reliable Model Selection-Inspired Graph Metric Learning

Cheng Yang,
Fei Zheng,
Yujie Zou
et al.

Abstract: The problem of learning graph-based data structures from data has attracted considerable attention in the past decade. Different types of data can be used to infer the graph structure, such as graphical Lasso, which is learned from multiple graph signals or graph metric learning based on node features. However, most existing methods that use node features to learn the graph face difficulties when the label signals of the data are incomplete. In particular, the pair-wise distance metric learning problem becomes… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 40 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?