Coiled-coil domain containing 88C (CCDC88C) is a component of non-canonical Wnt signaling, and its dysregulation causes colorectal cancer metastasis. Dysregulated expression of CCDC88C was observed in lymph node metastatic tumor tissues of breast cancer. However, the role of CCDC88C in breast cancer metastasis remains unclear. To address this, the stable BT549 and SKBR3 cell lines with CCDC88C overexpression or knockdown were developed. The loss/gain-of-function experiments suggested that CCDC88C was a driver of breast cancer cell motility. Similar potentials of CCDC88C were observed in the lung and liver metastasis of BT549 cells. We found that CCDC88C led to c-JUN transactivation. The overlapping genes were identified from the genes modulated by CCDC88C and c-JUN. CEMIP, one of these overlapping genes, has been confirmed to drive breast cancer metastasis. We found that CCDC88C regulated CEMIP mRNA levels via c-JUN and it exerted pro-metastatic capabilities in a CEMIP-dependent manner. Moreover, we identified the CCDC88C as a substrate of polypeptide N-acetylgalactosaminyltransferase 6 (GALNT6). GALNT6 was positively correlated with CCDC88C protein abundance in the normal breast and breast cancer tissues, indicating that GALNT6 might be associated with expression patterns of CCDC88C in breast cancer. Our data demonstrated that GALNT6 was critical for the maintenance of CCDC88C stability and CCDC88C could mediate the pro-metastatic potential of GALNT6 in breast cancer. Collectively, our findings uncover that CCDC88C may increase the risk of breast cancer metastasis and elucidate the underlying molecular mechanisms.