Activating mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) underlie the pathogenesis and chemoresistance of ∼30% of all human tumors, yet the development of high-affinity inhibitors that target the broad range of KRAS mutants remains a formidable challenge. Here, we report the development and validation of stabilized alpha helices of son of sevenless 1 (SAH-SOS1) as prototype therapeutics that directly inhibit wild-type and mutant forms of KRAS. SAH-SOS1 peptides bound in a sequence-specific manner to KRAS and its mutants, and dose-responsively blocked nucleotide association. Importantly, this functional binding activity correlated with SAH-SOS1 cytotoxicity in cancer cells expressing wild-type or mutant forms of KRAS. The mechanism of action of SAH-SOS1 peptides was demonstrated by sequencespecific down-regulation of the ERK-MAP kinase phosphosignaling cascade in KRAS-driven cancer cells and in a Drosophila melanogaster model of Ras85D V12 activation. These studies provide evidence for the potential utility of SAH-SOS1 peptides in neutralizing oncogenic KRAS in human cancer.R AS signaling is a critical control point for a host of cellular functions ranging from cellular survival and proliferation to cellular endocytosis and motility (1). The on or off state of RAS is dictated by nucleotide exchange. GTP-bound RAS is the activated form that engages its downstream effectors with high avidity. The endogenous GTPase activity of RAS hydrolyzes GTP to GDP and inactivates signaling. This biochemical process is further regulated by GTPase-activating proteins (GAPs) that impair RAS signaling through increasing endogenous GTPase activity and guanine-nucleotide exchange factors (GEFs) that enhance RAS signaling by facilitating GDP release and, thus, GTP association. Given the central roles of RAS in cellular growth and metabolism, it is not surprising that cancer cells usurp its prosurvival activities to achieve immortality.Activating mutations in KRAS represent the most frequent oncogenic driving force among the RAS homologs K-, N-, and H-RAS, and are associated with poor prognosis and chemoresistance (2). KRAS mutations are present in ∼30% of human tumors and at even higher frequencies in cancers of the pancreas, lung, thyroid gland, colon, and liver. For example, in pancreatic ductal adenocarcinomas (PDAC) that carry a 5-y survival rate of less than 5%, activating KRAS mutations are present in more than 90% of tumors (3). Thus, therapeutic inhibition of RAS is among the highest priority goals of the cancer field. Because oncogenic forms of KRAS typically harbor single-point mutants that stabilize its active GTP-bound form, a host of recent small molecule and peptide development efforts have been aimed at disarming this pathologic biochemical state. The extremely high affinity of KRAS for its GTP substrate has hampered the development of competitive GTP inhibitors. However, a GDP mimetic that covalently modifies the mutant cysteine of KRAS G12C represents a promising approach to plugging the nucleotid...