This comprehensive literature review investigates the impact of stabilization and reinforcement techniques on the mechanical, hygrothermal properties, and durability of adobe and compressed earth blocks (CEBs). Recent advancements in understanding these properties have spurred a burgeoning body of research, prompting a meticulous analysis of 70 journal articles and conference proceedings. The selection criteria focused on key parameters including construction method (block type), incorporation of natural fibers or powders, partial or complete cement replacement, pressing techniques, and block preparation methods (adobe or CEB). The findings unearth several significant trends. Foremost, there is a prevailing interest in utilizing waste materials, such as plant matter, construction and demolition waste, and mining by-products, to fortify or stabilize earth blocks. Additionally, the incorporation of natural fibers manifests in a discernible reduction in crack size attributable to shrinkage, accompanied by enhancements in durability, mechanical strength, and thermal resistance. Moreover, this review underscores the imperative of methodological coherence among researchers to facilitate scalable and transposable results. Challenges emerge from the variability in base soil granulometry and disparate research standards, necessitating concerted efforts to harness findings effectively. Furthermore, this review illuminates a gap in complete lifecycle analyses of earthen structures, underscoring the critical necessity for further research to address this shortfall. It emphasizes the urgent need for deeper exploration of properties and sustainability indicators, recognizing the inherent potential and enduring relevance of earthen materials in fostering sustainable development. This synthesis significantly contributes to the advancement of knowledge in the field and underscores the continued importance of earth-based construction methodologies in contemporary sustainable practices.