This article discusses how a trade-off between the high directionality of emissions and low threshold gain can be achieved in active eccentric microring cavities. Our findings are based on the lasing eigenvalue problem formalism, considered using the method of analytical regularisation, and an extremely fast and accurate dedicated Galerkin method, applied to a set of associated Muller boundary integral equations. This method allows us to investigate symmetric and antisymmetric modes separately, on the threshold of nonattenuation in time emission. Numerical results show that the directivities of emission of working modes in a given frequency range, together with their threshold values of gain, are controlled by the size and location of the air hole in the cavity. The high efficiency of the developed code allows us to make an elementary optimisation of the considered cavity; this code is a promising engineering tool in the design of microring lasers.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.