2022
DOI: 10.48550/arxiv.2208.03740
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Multi-agent reinforcement learning for intent-based service assurance in cellular networks

Abstract: Recently, intent-based management has received good attention in telecom networks owing to stringent performance requirements for many of the use cases. Several approaches in the literature employ traditional closed-loop driven methods to fulfill the intents on the KPIs. However, these methods consider every closed-loop independent of each other which degrades the combined performance. Also, such existing methods are not easily scalable. Multi-agent reinforcement learning (MARL) techniques have shown significa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?