“…Also,findingthebest-fitsettingforbuildingalogisticmodelneedsacertainamountofcross-validation experimentsthatcanalsobeverytime-consuming (Diamantidis,Karlis,&Giakoumakis,2000). Asmanytechniqueswereproposedtospeedupthetrainingprocessandgethighperformance computation,forexampleMultithreaded,Multi-coreCPUs,MessagePassingInterface(MPI)and recently Open Computing Language (OpenCL) (Zouaneb, Belarbi, & Chouarfia, 2016). Each technologyhasitsowndeploymentcharacteristicsandexecutioncost.Nowadays,manyresearchers focus in parallelizing a variety of complex computational algorithms (Lotrič & Dobnikar, 2009) basedonrecentcapabilitiesofnewhardwarearchitectures.OpenCLisoneofHighperformance computation and development framework that is developed by Khronos group to expand GPUs computationfromnotonlygraphicsrending,butalsogeneralpurposecomputation(oftencalled GeneralPurposeGPU:GPGPU) (Harris,2005) (Witten,Frank,Hall,&Pal,2016).OpenCLprovides an industry standard for parallel programming of heterogeneous computing platforms (Zouaneb, Belarbi,&Chouarfia,2016),itisnotdedicatedtospecificGPUvendorslikeComputeUnifiedDevice Architecture(CUDA)whichisrestrictedonlyforNVidiaGPUs.TherecentdevelopmentsofGPU haveshownasuperbcomputationalperformancewiththecurrentmulti-coreCPUs.Nevertheless, GPUsarespeciallydesignedtofacilitateacceleratedgraphicsprocessing;theyhavebeenusedas generalpurposecomputingdevices.CertainhighperformanceGPUsarenowdesignedtoexecutes general-purposeprocessesinsteadofgraphicsrendering,whichitwastheonlyusageofGPUsbefore (Munshi,2009) Thispaperisorganizedasfollows.Insection2,wediscussedtherelevantworksthathavedone beforeinacceleratingthetrainingprocesswithrespecttoourapproach.Theproposedapproachis presentedindetailinsection3alongwithsequentialtrainingprocessoflogisticregression.Section 4analysestheresultsobtainedfromrunningseveralexperimentsondifferentplatforms.Finally,the paperisconcludedinsection5.…”