Recently, we have observed that the digital potential function defined by the difference between the real and virtual organ depth images is globally stable where the real and virtual livers coincide. This globality is then used to overlay the real and virtual livers. In this study, we consider the installation of a robotic mechanical system for measuring the depth images of real organs in the surgical bed. In general, virtual organs measured by CT or MRI show the position and posture of blood vessel groups and malignant tumors, and if these can be presented to the physician during surgery, he or she can operate while confirming their positions in real time. Although this robotic mechanical system is designed such that the camera can be raised or lowered as necessary to avoid interfering with the movement of the doctor, assistant, or nurse during surgery, it may still shift owing to contact with the hands or head of the doctor or nurse. In this study, an experiment was conducted in which a surgical measurement robotic mechanical system was constructed in a VR environment, and an actual robot was installed using this as a model. In the experiment, a video image of a virtual object was superimposed on that of a real object to confirm whether the surgical robotic mechanical system was able to accurately measure the surgical site.