The effects of different fermentation strains on the flavor characteristics of fermented soybean curd (FSC) were investigated in this study. Fresh tofu was fermented by Actinomucor elegans, Rhizopus arrhizus, Mucor racemosus, and Rhizopus chinensis, either alone or in various combinations. The FSC manufacturing process included prefermentation by different strains at 28 °C for 60 hr, followed by salting at 16 °C for 7 days and finally proceeding postfermentation at 25 °C for 35 days. Subsequently, five tested samples were obtained, namely, sample A (fermented by A. elegans alone), R (fermented by R. arrhizus alone), AR (fermented by A. elegans and R. arrhizus at 5:1), AM (fermented by A. elegans and M. racemosus at 1:1), and RR (fermented by R. arrhizus and R. chinensis at 7:3). The flavors of the five samples were determined by E‐nose, sensory evaluation, and GC‐MS. E‐nose system observed significant discriminations by principal component analysis and linear discriminant analysis analysis. Sensory evaluation ranked the overall sensory scores: AR>AM>A>RR>R. As shown in GC‐MS results, sample AR also had, on average, the highest level of many volatiles. Out of 10 critical volatiles, the detected frequency of samples AR, AM, RR, A, and R was 10, 9, 9, 8, and 7, respectively. PLS2 regression model was used to explore the influence on flavor quality of different strains. All three analytic methods revealed similar results, with sample AR providing the best flavor quality, while the opposite was the case with sample R. Therefore, it could be concluded that A. elegans and R. arrhizus at 5:1 (v/v) was the optimal combination, and may likely promote the production of critical volatile compounds.
Practical Application
The flavors of fermented soybean curds are influenced by various factors such as physicochemical and microorganism during the fermentation surroundings. The results of this work not only provide valuable information for FSC flavor studies, but can also guide the FSC industry to improve flavor quality by applying the most appropriate production strains.