2020
DOI: 10.3389/fped.2020.00508
|View full text |Cite
|
Sign up to set email alerts
|

Multi-Channel Fetal ECG Denoising With Deep Convolutional Neural Networks

Abstract: Non-invasive fetal electrocardiography represents a valuable alternative continuous fetal monitoring method that has recently received considerable attention in assessing fetal health. However, the non-invasive fetal electrocardiogram (ECG) is typically severely contaminated by a considerable amount of various noise sources, rendering fetal ECG denoising a very challenging task. This work employs a deep learning approach for removing the residual noise from multi-channel fetal ECG after the maternal ECG has be… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
13
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
1
1

Relationship

1
8

Authors

Journals

citations
Cited by 31 publications
(22 citation statements)
references
References 30 publications
0
13
0
2
Order By: Relevance
“…In this case report, we used an end-to-end trained deep convolutional neural network for denoising the foetal ECG signals. 10 The noninvasive foetal ECG displays variations in amplitude. Foetal movements or maternal breathing may cause such variations.…”
Section: Discussionmentioning
confidence: 99%
“…In this case report, we used an end-to-end trained deep convolutional neural network for denoising the foetal ECG signals. 10 The noninvasive foetal ECG displays variations in amplitude. Foetal movements or maternal breathing may cause such variations.…”
Section: Discussionmentioning
confidence: 99%
“…• Artificial neural networks are used for parallel data processing based on mimicking the behavior of biological structures. The use of convolutional neural networks (CNN) to remove noise from the fECG signal has been tested in [65] with very good results. High-quality fECG filtration was also achieved in [66], where dynamic neural networks (DNN) with FIR synapses were tested and analyzed.…”
Section: B Methods For Fecg Signal Extractionmentioning
confidence: 99%
“…AE merupakan salah satu model generatif, disebut generatif karena model dapat menghasilkan data berupa sinyal (Fotiadou & Vullings, 2020) ataupun gambar (Lee, dkk, 2018). Generatif model digunakan untuk beberapa tujuan salah satunya untuk meningkatkan atau menurunkan resolusi sinyal (Hartmann, dkk, 2018) (Luo, dkk, 2020), augmentasi data (Hwang, dkk, 2019) (Jiao, dkk, 2020), dan tujuan lainnya (Hu, dkk, 2015) (Nejedly, dkk, 2019).…”
Section: Pendahuluanunclassified
“…Generatif model digunakan untuk beberapa tujuan salah satunya untuk meningkatkan atau menurunkan resolusi sinyal (Hartmann, dkk, 2018) (Luo, dkk, 2020), augmentasi data (Hwang, dkk, 2019) (Jiao, dkk, 2020), dan tujuan lainnya (Hu, dkk, 2015) (Nejedly, dkk, 2019). Turunan AE dengan peruntukan membersihkan derau disebut Denoising AE (DAE), DAE telah terbukti berhasil membersihkan derau dari data EKG (Fotiadou & Vullings, 2020) dan membersihkan foto dari hujan (Lee, dkk, 2018). Pada penelitian ini kami menggunakan DAE untuk merekonstruksi sinyal EEG yang terkontaminasi artefak EOG.…”
Section: Pendahuluanunclassified