2017
DOI: 10.25007/ajnu.v6n3a86
|View full text |Cite
|
Sign up to set email alerts
|

Multi-class Classifier based on Support Vector Machine with Application to Ordinal Data

Abstract: Support vector machine initially developed to perform binary classification. This paper presents a multi-class support vector machine classifier and ordinal regression to classify the type of bone mineral density. This paper compares the performance of four multi-class approaches, one-against-all, one-against-one, Weston and Watkins, and Crammer and Singer. Results from our real life data conclude that Crammer and Singer may be better approach depending on training error and the percentage of correctly classif… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 4 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?