Multi-class identification of tonal contrasts in Chokri using supervised machine learning algorithms
Amalesh Gope,
Anusuya Pal,
Sekholu Tetseo
et al.
Abstract:This study examines and explores the effectiveness of various Machine Learning Algorithms (MLAs) in identifying intricate tonal contrasts in Chokri (ISO 639-3), an under-documented and endangered Tibeto-Burman language of the Sino-Tibetan language family spoken in Nagaland, India. Seven different supervised MLAs, viz., [Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naive Bayes (NB)], and one neural network (NN)-based algorithms [Artif… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.