2017
DOI: 10.1145/3051481
|View full text |Cite
|
Sign up to set email alerts
|

Multi-Class Latent Concept Pooling for Computer-Aided Endoscopy Diagnosis

Abstract: Successful computer-aided diagnosis systems typically rely on training datasets containing sufficient and richly annotated images. However, detailed image annotation is often time consuming and subjective, especially for medical images, which becomes the bottleneck for the collection of large datasets and then building computer-aided diagnosis systems. In this article, we design a novel computer-aided endoscopy diagnosis system to deal with the multi-classification problem of electronic endoscopy medical recor… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 52 publications
0
0
0
Order By: Relevance