Object recognition is a significant approach employed for recognizing suitable objects from the image. Various improvements, particularly in computer vision, are probable to diagnose highly difficult tasks with the assistance of local feature detection methodologies. Detecting multi-class objects is quite challenging, and many existing researches have worked to enhance the overall accuracy. But because of certain limitations like higher network loss, degraded training ability, improper consideration of features, less convergent and so on. The proposed research introduced a hybrid convolutional neural network (H-CNN) approach to overcome these drawbacks. The collected input images are pre-processed initially through Gaussian filtering to eradicate the noise and enhance the image quality. Followed by image pre-processing, the objects present in the images are localized using Grid Guided Localization (GGL). The effective features are extracted from the localized objects using the AlexNet model. Different objects are classified by replacing the concluding softmax layer of AlexNet with Support Vector Regression (SVR) model. The losses present in the network model are optimized using the Improved Grey Wolf (IGW) optimization procedure. The performances of the proposed model are analyzed using PYTHON. Various datasets are employed, including MIT-67, PASCAL VOC2010, Microsoft (MS)-COCO and MSRC. The performances are analyzed by varying the loss optimization algorithms like improved Particle Swarm Optimization (IPSO), improved Genetic Algorithm (IGA), and improved dragon fly algorithm (IDFA), improved simulated annealing algorithm (ISAA) and improved bacterial foraging algorithm (IBFA), to choose the best algorithm. The proposed accuracy outcomes are attained as PASCAL VOC2010 (95.04%), MIT-67 dataset (96.02%), MSRC (97.37%), and MS COCO (94.53%), respectively.