2021
DOI: 10.1088/1742-6596/1894/1/012099
|View full text |Cite
|
Sign up to set email alerts
|

Multi-classifier Combined Anomaly Detection Algorithm Based On Feature Map In Underground Coal Mine

Abstract: The detection of abnormal activities in deep learning is of great significance for preventing the occurrence of abnormal disasters in mine production. As the underground scenes of coal mines are characterized by much noise and uneven light, the traditional manual feature extraction method has little obvious effect in the underground and low accuracy of anomaly detection. To solve the above problems, a feature extraction method combining CNN+LSTM is proposed. Secondly, the obtained features are matched by graph… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 6 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?