Thin film nanoindentation has increased interest due to its usage in various applications. It is virtually impossible to measure thin film elastic modulus without the substrate influence. Several different methods exist to obtain the true thin film’s elastic modulus with no attention given to investigate what parameters can improve insight into thin film mechanical property measurement. A key parameter is the tip radius. This work is aimed at quantifying the influence of the tip radius on the strain field under the indenter. Three Berkovich indentation tips with different tip radii were used for thin multilayer nanoindentation with numerical modelling. The results confirm the existence of the large elastically deformed zone, with a strong localization under the tip. Comparison between the experiments and numerical model shows direct connection between the tip radius and strain localization affecting the experiment, emphasizing importance of knowing the tip radius.