2015
DOI: 10.15388/informatica.2015.57
|View full text |Cite
|
Sign up to set email alerts
|

Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS)

Abstract: An effective way for managing and controlling a large number of inventory items or stock keeping units (SKUs) is the inventory classification. Traditional ABC analysis which based on only a single criterion is commonly used for classification of SKUs. However, we should consider inventory classification as a multi-criteria problem in practice. In this study, a new method of Evaluation based on Distance from Average Solution (EDAS) is introduced for multi-criteria inventory classification (MCIC) problems. In th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
369
0
22

Year Published

2016
2016
2024
2024

Publication Types

Select...
6
2

Relationship

2
6

Authors

Journals

citations
Cited by 951 publications
(392 citation statements)
references
References 44 publications
1
369
0
22
Order By: Relevance
“…The EDAS method was developed by Keshavarz Ghorabaee et al (2015). The method is very useful when it has been some conflicting criteria.…”
Section: The Edas Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…The EDAS method was developed by Keshavarz Ghorabaee et al (2015). The method is very useful when it has been some conflicting criteria.…”
Section: The Edas Methodsmentioning
confidence: 99%
“…It is need to calculate two measures dealing with the desirability of the alternatives: the positive distance from average (PDA) and the negative distance from average (NDA). As n and m represent number of alternative and number of criterion, respectively, the steps of this method are presented as follows (Keshavarz Ghorabaee et al 2015):…”
Section: The Edas Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…The EDAS method is a new and efficient MCDM method introduced by Keshavarz Ghorabaee, Zavadskas, Olfat and Turskis [30], and has been extended to deal with fuzzy MCDM problems [31].…”
Section: Dynamic Fuzzy Edasmentioning
confidence: 99%
“…AHP (Saaty 1980), TOPSIS (Hwang, Yoon 1981), ELECTRE (Roy 1968), PROMETHEE (Brans et al 1984), MACBETH (Bana e Costa, Vansnick 1994), COPRAS (Zavadskas, Kaklauskas 1996), VIKOR (Opricovic 1998), MOORA (Brauers, Zavadskas 2006), ARAS , SWARA (Keršulienė et al 2010), WASPAS (Zavadskas et al 2012), FARE (Ginevicius 2011), MULTIMOORA (Brauers, Zavadskas 2010), BWM (Rezaei 2015) and EDAS (Keshavarz Ghorabaee et al 2015).…”
Section: Introductionmentioning
confidence: 99%