The weakly nonlinear dynamics of dust ion-acoustic waves (DIAWs) are investigated in a dusty plasma consisting of hot ion fluid, variable charge stationary dust grains and non-thermally distributed electrons. The Korteweg-de Vries equation, as well as the Korteweg-de Vries-Burgers equation, are derived on the basis of the well-known reductive perturbation theory. It is shown that, due to electron non-thermality and finite ion temperature, the present dusty plasma model can support compressive as well as rarefactive DIA solitary waves. Furthermore, there may exist collisionless DIA shock-like waves which have either monotonic or oscillatory behavior, the properties of which depend sensitively on the number of fast non-thermal electrons. The results complement and provide new insights into previously published results on this problem (Mamun, A. A. and Shukla, P. K. 2002 IEEE Trans. Plasma Sci. 30, 720).