Multi-Energy Coupling Load Forecasting in Integrated Energy System with Improved Variational Mode Decomposition-Temporal Convolutional Network-Bidirectional Long Short-Term Memory Model
Xinfu Liu,
Wei Liu,
Wei Zhou
et al.
Abstract:Accurate load forecasting is crucial to the stable operation of integrated energy systems (IES), which plays a significant role in advancing sustainable development. Addressing the challenge of insufficient prediction accuracy caused by the inherent uncertainty and volatility of load data, this study proposes a multi-energy load forecasting method for IES using an improved VMD-TCN-BiLSTM model. The proposed model consists of optimizing the Variational Mode Decomposition (VMD) parameters through a mathematical … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.