Background
Atrial fibrillation (AF) is associated with left atrial (LA) structural and functional changes. Cardiac magnetic resonance (CMR) late gadolinium enhancement (LGE) and feature-tracking are capable of noninvasive quantification of LA fibrosis and myocardial motion, respectively. We sought to examine the association of phasic LA function with LA enhancement in patients with AF.
Methods and Results
LA structure and function was measured in 90 AF patients (age 61 ± 10 years, 76% male) referred for ablation and 14 healthy volunteers. Peak global longitudinal LA strain (PLAS), LA systolic strain rate (SR-s), and early (SR-ed) and late diastolic (SR-ld) strain rates were measured using cine-CMR images acquired during sinus rhythm. The degree of LGE was quantified. Compared to patients with paroxysmal AF (60% of cohort), those with persistent AF had larger maximum LA volume index (LAVImax, 56 ± 17ml/m2 versus 49 ± 13ml/m2 p=0.036), and increased LGE (27.1± 11.7% versus 36.8 ± 14.8% p<0.001). Aside from LA active emptying fraction, all LA parameters (passive emptying fraction, PLAS, SR-s, SR-ed and SR-ld) were lower in patients with persistent AF (p< 0.05 for all). Healthy volunteers had less LGE and higher LA functional parameters compared to AF patients (p<0.05 for all). In multivariable analysis, increased LGE was associated with lower LA passive emptying fraction, PLAS, SR-s, SR-ed, and SR-ld (p<0.05 for all).
Conclusions
Increased LA enhancement is associated with decreased LA reservoir, conduit, and booster pump functions. Phasic measurement of LA function using feature-tracking CMR may add important information regarding the physiological importance of LA fibrosis.