2022
DOI: 10.48550/arxiv.2203.05351
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Multi-index Sequential Monte Carlo ratio estimators for Bayesian Inverse problems

Abstract: We consider the problem of estimating expectations with respect to a target distribution with an unknown normalizing constant, and where even the unnormalized target needs to be approximated at finite resolution. This setting is ubiquitous across science and engineering applications, for example in the context of Bayesian inference where a physics-based model governed by an intractable partial differential equation (PDE) appears in the likelihood. A multi-index Sequential Monte Carlo (MISMC) method is used to … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?