“…[76] Research of solvation properties of Ca 2þ also showed coordination number, distances, and species in solvation shell were highly relevant with concentrations. [77] Hence, through proper electrolyte and [45] Ca(BF 4 ) 2 0.45 M in EC/PC SS CaF 2 , hydroxide, carbonate 100 C, 0.05 mA cm À2 and 0.017 mAh cm À2 for 92 h, 0.05 V overpotential, negligible potential shift, 3.5 V anodic stability for Al [66] Ca(BF 4 ) 2 1 M in EC/PC Cu Unknown phase >1 V overpotential, observed Ca deposits, nearly inactive [71] Ca(BF 4 ) 2 1 M in EMI þ TFS Àa) Cu CaF 2 , CaS >1 V overpotential, observed Ca deposits, nearly inactive [72] Ca(BF 4 ) 2 1 M EC/DEC Ca CaF 2 >1 V overpotential, nearly inactive [61] Ca(PF 6 ) 2 1 M EC/DEC Ca CaF 2 >1 V overpotential, nearly inactive [59] Ca(ClO 4 ) 2 0.5 M in BL b) , or PC, or ACN Ca CaCl 2 , CaCO 3 , Ca(OH) 2 , >1 V overpotential at 5 mV s À1 , nearly inactive [67] Ca(ClO 4 ) 2 0.3 M in EC/PC SS Ca(OH) 2 75-100 C, >1 V overpotential at 0.5 mV s À1 , 0.004 mA stripping current, nearly inactive [66] Ca(TFSI) 2 0.1 M and 0.45 M in EC/PC Ca CaCO 3 25-100 C, charge transfer resistance >10 6 Ohm, inactive [83] Ca(TFS) 2 0.1 M in DMF c) SS -Corrosive [45] Ca(TFS) 2 0.05 M in DEME þ TFSA À , 0.1-0.3 M in TMP Ca -60 C, negligible capacity, inactive [55] Ca(BH 4 ) 2 1.5 M in THF Au CaH 2 1 mA cm À2 and 1 mAh cm À2 for 100 h, 0.1 V overpotential, negligible potential shift. <3 V anodic stability for Pt, 94-96% CE at 1 mA cm À2 [15] Ca[B(hfip) 4 ] 2 0.25 M in DME Pt, Ca CaF 2 0.1-0.5 mA cm À2 and 0.05-0.25 mAh cm À2 for 250 h, <0.06->0.5 V overpotential, little potential shift, 4.8 V anodic stability for Al, 80% CE at 80 mV s À1 [16] Ca[B(hfip) 4 ] 2 0.5 M in DME Au CaF 2 0.5 mA cm À2 and 1 mAh cm À2 for 72 h, 0.2 V overpotential, little potential shift, 4.1 V anodic stability for Al, 92% CE at 25 mV s À1 [17] Ca[B(hfip) 4 ] 2 0.25 M in DGM GC, Cu, Al, Pt CaF 2 1-8 mA cm À2 for 300 h, <0.1->0.5 V overpotential, 61-85% CE at 100 mV s À1 [53] a)…”