Multi-label classification with imbalanced classes by fuzzy deep neural networks
Federico Succetti,
Antonello Rosato,
Massimo Panella
Abstract:Multi-label classification is an advantageous technique for managing uncertainty in classification problems where each data instance is associated with several labels simultaneously. Such situations are frequent in real-world scenarios, where decisions rely on imprecise or noisy data and adaptable classification methods are preferred. However, the problem of class imbalance represents a common characteristic of several multi-label datasets, in which the distribution of samples and their corresponding labels is… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.