This study analyzed the effect of incorporating graphene nanoplatelets in the fiber-matrix interphase on the behavior of a multiscale composite laminate based on carbon fibers and epoxy resin subjected to contact loads. The selected loading mode was the contact between an elastic surface and a cylinder. The multiscale composite material used was a quasi-isotropic laminate with graphene nanoplatelets (GnPs) added at the fiber-matrix interface. The specimens were prepared with 0.0%, 0.1%, and 0.25% by-weight GnPs. Laminate beams were used according to the ASTM D7264 standard, and contact was studied in two configurations, applying the load at the edge of the laminate and in the other, in the plane of the test pieces. The normal strains in the contact region were determined experimentally using the interferometric Moiré technique. These results were compared with estimations using the Hertz contact theory and the finite element method (FEM). The normal strains in the contact area of specimens with fibers modified with 0.1% GnPs were lower than those with 0.25% or fibers without surface modification. Excellent agreement between the experimental results along lines in the contact zone with those estimated with the FEM. The normal strains in a direction perpendicular to the applied load obtained by the Hertz theory for the maximum deformation were slightly higher than those obtained by FEM. Except for those calculated for the normal strain in εy for the load in the direction of the thickness, although the distribution was very similar to those obtained by FEM as well as the experimental one.