Applications for retrieving similar images from a large collection of images have increased significantly in various fields with the rapid advancement of digital communication technologies and exponential evolution in the usage of the Internet. Content-based image retrieval (CBIR) is a technique to find similar images on the basis of extracting the visual features such as color, texture, and/or shape from the images themselves. During the retrieval process, features and descriptors of the query image are compared to those of the images in the database to rank each indexed image accordingly to its distance to the query image. This paper has developed a new CBIR technique which entails two layers, called bi-layers. In the first layer, all images in the database are compared to the query image based on the bag of features (BoF) technique, and hence, the M most similar images to the query image are retrieved. In the second layer, the M images obtained from the first layer are compared to the query image based on the color, texture, and shape features to retrieve the N number of the most similar images to the query image. The proposed technique has been evaluated using a well-known dataset of images called Corel-1K. The obtained results revealed the impact of exploring the idea of bi-layers in improving the precision rate in comparison to the current state-of-the-art techniques in which achieved precision rate of 82.27% and 76.13% for top-10 and top-20, respectively.