“…Thus, exploring a sequential architecture comes as a natural and reasonable choice to learn data dynamics, especially when data representations tend to be sparse. Bellini et al (2017), Chae et al (2019), He et al (2019), Hu et al (2019), Jhamb et al (2018), Lee et al (2017Lee et al ( , 2018, Liang et al (2018), Liu et al (2017), Nisha and Mohan (2019), Song et al (2019), Wang, Chen, et al (2019), Wang et al (2020) Convolutional neural network (CNN) 9 Chen, Cai, et al (2019), Da Costa and Dolog (2019), Hyun et al (2018), Liu et al (2017Liu et al ( , 2019, Wang, Chen, et al (2019), Zhang, Cheng, and Ren (2019), Zhang, Yao, et al (2017), Zheng et al (2017) Generative adversarial network (GAN) 3 Chae et al 2019, Lee et al (2017), Wang, Chen, et al (2019) Graph neural network (GNN) 2 Wu, Hong, et al (2019), Zheng et al (2018) Multilayer perceptron (MLP) 20 Bai et al (2017), Cao et al, 2018, C. Chen et al (2020, L. Chen, Zheng, et al (2018), W. Chen, Cai, et al (2019) , Zhou et al (2019) Neural attention 13 (Cao et al (2018), L. Chen, Zheng, et al, 2018, Chin et al, 2018, W. Fan et al (2019, Feng & Zeng, 2019, Jhamb et al (2018…”