2020
DOI: 10.48550/arxiv.2010.00537
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Multi-level Monte Carlo Finite Difference Methods for Fractional Conservation Laws with Random Data

Abstract: We establish a notion of random entropy solution for degenerate fractional conservation laws incorporating randomness in the initial data, convective flux and diffusive flux. In order to quantify the solution uncertainty, we design a multi-level Monte Carlo Finite Difference Method (MLMC-FDM) to approximate the ensemble average of the random entropy solutions. Furthermore, we analyze the convergence rates for MLMC-FDM and compare it with the convergence rates for the deterministic case. Additionally, we formul… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?