In this study, a novel system named the third-generation wireless in-wheel motor (WIWM-3), which has a dynamic wireless power transfer (DWPT) system, is developed. It can extend the cruise range, which is one of the key specifications of electric vehicles. DWPT also reduces CO2 emission as the driving resistance is reduced due to light weight of the batteries. In this study, CO2 emission by an internal combustion vehicle, a long range drivable electric vehicle with the same cruise range, and an electric vehicle with WIWM-3 equipped with the DWPT system are analyzed using actual measurement data and calculated data based on actual measurement or specification data. A WPT system with WIWM-3 achieves 92.5% DC-to-DC efficiency as indicated by an actual measurement at the nominal position. Thus, the electric vehicle with DWPT can reduce up to 62% of CO2 emission in internal combustion vehicles, and the long-range drivable vehicle emits 17% more CO2 than the electric vehicle with DWPT. Moreover, it is expected that by 2050, electric vehicles with DWPT will reduce CO2 emissions from internal combustion vehicles by 95% in Japan. DWPT systems make electric vehicles more sustainable and, hence, more acceptable for consumers.