With the advances in manufacturing and design methods, engineers have been constantly pushed to improve mechanical components performance by minimizing part weight, maximize stiffness and optimize material usage. Tools such as topology optimization has been widely used to support the development of new components. While the optimization process for metallic components is well stablished, composite materials optimization still possess challenges to designers, especially due to the plies stacking sequence definition. The recent advances in 3D printed composite additive manufacturing have brought a new alternative to the composite manufacturing adding geometric freedom and challenges on the definition of the optimum material layout and lay-up. Thus, this paper expands upon existing mathematical methods by providing an algorithm to simultaneously minimizing the material distribution and the laminate stacking sequence of composite plates. Lamination parameters are used as design variables to optimize the laminate stacking sequence avoiding local optimum solutions and reducing the number of designable variables. Once the optimum topology and set of lamination parameters are defined, angle retrieval is performed to define the optimum plies orientation. Two problem examples are solved to illustrate the applicability of this approach.