Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics 2019
DOI: 10.1145/3307339.3342177
|View full text |Cite
|
Sign up to set email alerts
|

Multi-modal Predictive Models of Diabetes Progression

Abstract: With the increasing availability of wearable devices, continuous monitoring of individuals' physiological and behavioral patterns has become significantly more accessible. Access to these continuous patterns about individuals' statuses offers an unprecedented opportunity for studying complex diseases and health conditions such as type 2 diabetes (T2D). T2D is a widely common chronic disease that its roots and progression patterns are not fully understood. Predicting the progression of T2D can inform timely and… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
3

Year Published

2020
2020
2023
2023

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 14 publications
(10 citation statements)
references
References 14 publications
0
7
0
3
Order By: Relevance
“…Soniya et al [33] proposed joining a hybrid evolutionary approach with a convolutional neural network (CNN) and determined the number of layers and filters based on the application and user needs. Ramazi et al [34] developed a wide and deep neural network and used the data from demographic information, lab tests, and wearable sensors to create the model. Alharbi et al [35] proposed a hybrid algorithm, the GA-ELM algorithm, which optimally diagnosed type 2-diabetes patients, and classified the data set with an accuracy of 97.5% using six effective features out of the original eight features given in the dataset.…”
Section: Related Workmentioning
confidence: 99%
“…Soniya et al [33] proposed joining a hybrid evolutionary approach with a convolutional neural network (CNN) and determined the number of layers and filters based on the application and user needs. Ramazi et al [34] developed a wide and deep neural network and used the data from demographic information, lab tests, and wearable sensors to create the model. Alharbi et al [35] proposed a hybrid algorithm, the GA-ELM algorithm, which optimally diagnosed type 2-diabetes patients, and classified the data set with an accuracy of 97.5% using six effective features out of the original eight features given in the dataset.…”
Section: Related Workmentioning
confidence: 99%
“…We included articles that described or reported research focused on measures of physical activity of VIP, monitoring or improving QoL activities, and systems developed to aid athletes with visual impairments. Research that focuses on monitoring physiological and behavioral patterns with wearable devices, such as inertial sensors, has become more prevalent due to the increasing availability of wearable small devices [ 113 ]. Wearable accelerometers are widely used in adapted PA research, since physical inactivity is a serious health issue in VIP [ 61 ].…”
Section: Discussionmentioning
confidence: 99%
“…С увеличением доступности носимых устройств стал значительно более доступным непрерывный мониторинг физиологических и поведенческих особенностей людей. Работа [8] интересна еще и тем, что в модели использовались данные временных рядов из непрерывных измерений глюкозы и активности, а затем они объединялись с независящими от времени демографическими данными аналогично тому, как это делается в передовой системе [5]. Однако в этой работе использовалась долгая краткосрочная память (Long Short-Term Memory; LSTM), обеспечивающая хорошую производительность при работе с данными временных рядов и значительную общую точность.…”
Section: обзор литературыunclassified
“…Как сообщается в [5], эта система обеспечивают наилучшие точность и AUC ROC при решении задачи прогнозирования СД2. Использованию ансамблевой модели для выявления сахарного диабета посвящена и впечатляющая работа [8], которую можно считать развитием [5] из-за разнообразия используемых моделей. Однако по своим результатам [8] не опережает [5].…”
Section: предлагаемая системаunclassified
See 1 more Smart Citation