2020
DOI: 10.1016/j.shpsa.2020.03.001
|View full text |Cite
|
Sign up to set email alerts
|

Multi-model ensembles in climate science: Mathematical structures and expert judgements

Abstract: Projections of future climate change cannot rely on a single model. It has become common to rely on multiple simulations generated by Multi-Model Ensembles (MMEs), especially to quantify the uncertainty about what would constitute an adequate model structure. But, as Parker points out (2018), one of the remaining philosophically interesting questions is: "How can ensemble studies be designed so that they probe uncertainty in desired ways?" This paper offers two interpretations of what General Circulation Model… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
7
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 17 publications
(9 citation statements)
references
References 43 publications
(45 reference statements)
1
7
0
1
Order By: Relevance
“…This expansion could provide a range of possible future environmental impacts and thus give an estimate of uncertainty for the prospective evaluation. Moreover, since several IAMs exist, another interesting research avenue is to perform multiple simulations for each SSP using multi‐model ensembles to capture uncertainty induced by modeling choices, like what has been advocated and applied in the field of climate science (Jebeilea & Crucifix, 2020).…”
Section: Discussionmentioning
confidence: 99%
“…This expansion could provide a range of possible future environmental impacts and thus give an estimate of uncertainty for the prospective evaluation. Moreover, since several IAMs exist, another interesting research avenue is to perform multiple simulations for each SSP using multi‐model ensembles to capture uncertainty induced by modeling choices, like what has been advocated and applied in the field of climate science (Jebeilea & Crucifix, 2020).…”
Section: Discussionmentioning
confidence: 99%
“…Generally, the uncertainty sources in rainfall‐runoff projection include but are not limited to the GCMs, RCPs, downscaling methods, and the hydrological models, and the uncertainties of the GCMs and RCPs are more obvious than those of the other two aspects (Chen et al., 2020; Wu et al., 2015). Typical approaches to reduce uncertainties include multi‐model ensembles (MMEs) (Jebeile & Crucifix, 2020) and multi‐model weighted ensembles (Colorado‐Ruiz et al., 2018). However, due to the limitation of the number of GCMs, the use of MMEs may be unsuitable in this study.…”
Section: Discussionmentioning
confidence: 99%
“…Les différentes représentations d'un même phénomène ne font pas forcément appel aux mêmes lois théoriques et aux mêmes idéalisations, peuvent servir différents objectifs ou avoir différentes fonctions épistémiques et peuvent donc être a priori incommensurables, non contradictoires ou incompatibles, et peuvent à la fois vivre dans des environnements différents et servir à instruire un même phénomène 13 . Ainsi, les sciences du climat semblent pouvoir tirer parti de la diversité de modèles qui existent en procédant par exemple à des intercomparaisons sur des points précis (grâce aux Programmes internationaux d'intercomparaison de modèles ou CMIP notamment) qui permettent in fine de quantifier les incertitudes, identifier les contraintes émergentes, tirer des prédictions robustes et calculer des moyennes statistiques [Jebeile & Crucifix 2020].…”
Section: Conclusion : La Désuétude Et Le Pluralismeunclassified