As transportation system plays a vastly important role in combatting newly-emerging and severe epidemics like the coronavirus disease 2019 (COVID-19), the vehicle routing problem (VRP) in epidemics has become an emerging topic that has attracted increasing attention worldwide. However, most existing VRP models are not suitable for epidemic situations, because they do not consider the prevention cost caused by issues such as viral tests and quarantine during the traveling. Therefore, this paper proposes a multi-objective VRP model for epidemic situations, named VRP4E, which considers not only the traditional travel cost but also the prevention cost of the VRP in epidemic situations. To efficiently solve the VRP4E, this paper further proposes a novel algorithm named multiobjective ant colony system algorithm for epidemic situations, termed MOACS4E, together with three novel designs. First, by extending the efficient "multiple populations for multiple objectives" framework, the MOACS4E adopts two ant colonies to optimize the travel and prevention costs respectively, so as to improve the search efficiency. Second, a pheromone fusionbased solution generation method is proposed to fuse the pheromones from different colonies to increase solution diversity effectively. Third, a solution quality improvement method is further proposed to improve the solutions for the prevention cost objective. The effectiveness of the MOACS4E is verified in experiments on 25 generated benchmarks by comparison with six state-of-the-art and modern algorithms. Moreover, the VRP4E in different epidemic situations and a real-world case in Manuscript