In this paper, we studied a substage-zoning filling design problem, which is considered as a complex problem with numerous tasks such as construction planning, dam access road and borrow placement, workspace filling, and construction project management. In analyzing workflows and the mechanism of substage-zoning filling, not only the above-mentioned tasks are considered, but also the environmental factors such as rainfall and hydrology characteristic temperature are taken into account. In this study, an optimization model for dam filling which aimed at reducing the disequilibrium degree of filling intensity was proposed; in addition, a technique based on particle swarm optimization was introduced as the basis of a decision support system for rock-fill dams. The system has been employed in a water conservancy and hydropower project which shows that the system is able to provide quality decision support and facilitate the rock-fill dam construction effectively.