This paper solves a multi-objective optimal power flow (MO-OPF) problem in a wind-thermal power system. Here, the power output from the wind energy generator (WEG) is considered as the schedulable, therefore the wind power penetration limits can be determined by the system operator. The stochastic behavior of wind power and wind speed is modeled using the Weibull probability density function. In this paper, three objective functions i.e., total generation cost, transmission losses and voltage stability enhancement index are selected. The total generation cost minimization function includes the cost of power produced by the thermal and WEGs, costs due to over-estimation and the under-estimation of available wind power. Here, the MO-OPF problems are solved using the multi-objective glowworm swarm optimiza-tion (MO-GSO) algorithm. The proposed optimization problem is solved on a modified IEEE 30 bus system with two wind farms located at two different buses in the system.