To overcome the low timeliness of resource scheduling problems in spatial information networks, we propose a method based on a dynamic reconstruction of resource request queues and the autonomous coordinated scheduling of resources. First, we construct a small satellite network and combine the graph maximum flow theory to solve the link resource planning problem during inter-satellite data transmission. In addition, we design a multi-satellite resource scheduling algorithm with minimal time consumption based on graph theory. The algorithm is based on graph theory to reallocate the resource request queue to satellites with idle processing resources. Finally, we simulate the efficient resource scheduling capability in the spatial information network and empirically compare our approaches against two representative swarm intelligence baseline approaches and show that our approach has significant advantages in terms of performance and time consumption during resource scheduling.