2014
DOI: 10.24200/tjer.vol11iss1pp23-33
|View full text |Cite
|
Sign up to set email alerts
|

Multi Objective Optimization of Flux Cored Arc Weld Parameters Using Hybrid Grey - Fuzzy Technique

Abstract: Abstract:In the present work, an attempt has been made to use the grey-based fuzzy logic method to solve correlated multiple response optimization problems in the field of flux cored arc welding. This approach converts the complex multiple objectives into a single grey-fuzzy reasoning grade. Based on the grey-fuzzy reasoning grade, optimum parameters are identified. The significant contributions of parameters are estimated using analysis of variance (ANOVA). This evaluation procedure can be used in intelligent… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
2

Year Published

2017
2017
2022
2022

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(6 citation statements)
references
References 24 publications
0
4
0
2
Order By: Relevance
“…Thus, uncertainty in the GRG can be handled by the fuzzy logic approach, and thereby, a fuzzy reasoning of multiple performance characteristics has been developed and is referred as grey-fuzzy systems (Abhishek et al , 2013). The optimisation procedure can be performed on a single grey-fuzzy reasoning grade (GFRG) rather than various multiple performance characteristics (Satheesh and Dhas, 2014). The GFRG is integrated with Taguchi’s method to optimisation of process parameters based on multiple responses (Rajmohan et al , 2013; Abhishek et al , 2016).…”
Section: Introductionmentioning
confidence: 99%
“…Thus, uncertainty in the GRG can be handled by the fuzzy logic approach, and thereby, a fuzzy reasoning of multiple performance characteristics has been developed and is referred as grey-fuzzy systems (Abhishek et al , 2013). The optimisation procedure can be performed on a single grey-fuzzy reasoning grade (GFRG) rather than various multiple performance characteristics (Satheesh and Dhas, 2014). The GFRG is integrated with Taguchi’s method to optimisation of process parameters based on multiple responses (Rajmohan et al , 2013; Abhishek et al , 2016).…”
Section: Introductionmentioning
confidence: 99%
“…Ketika berhadapan dengan persoalan multirespon, penyelesaian secara parsial untuk masing-masing respon menjadi tidak efektif dan menimbulkan kombinasi level parameter optimal yang tidak konsisten antar respon dikarenakan tidak semua respon memiliki karakteristik yang sama (Kutner, dkk., 2014). Dengan demikian dibutuhkan perhitungan statistika untuk mengetahui kombinasi yang tepat dalam kasus perancangan percobaan multirespon (Sathees dan Dhas 2013).…”
Section: Pendahuluanunclassified
“…3. Pengujian Asumsi Galat a. Uji kenormalan galat Pengujian terhadap asumsi kenormalan dilakukan menggunakan uji Kolmogorov Smirnov (Sathees & Dhas 2013).…”
Section: Metodologi Sumber Data Dan Variabel Penelitianunclassified